ENERGY | WIRELESS | NANOTECH | MEMS | OPTICS | QUANTUM | 3D | CHIPS | ALGORITHMS

Friday, April 23, 2004

"CHIPS: sharpened images reveal nature of atomic-scale structure of doping"
Stephen Pennycook describes a team of research scientists that have used an improved electron microscope to confirm a long-held theory concerning the structural nature of doped atomic-scale surfaces. The discovery also promises to give material designers the capability of predicting the composition of materials without having actually to fabricate samples. The scientists from Oak Ridge National Laboratory (ORNL), Pixon LLC and the Japan Society for the Promotion of Science recently produced images of an atom at resolutions as fine as 0.7 angstrom, a new world record. In doing so, they found out why trace amounts of dopants have such drastic effects on a material's properties. "It's been one of the world's long-standing unsolved mysteries, how the grains of ceramics form," said ORNL Fellow Stephen Pennycook about the surface of his silicon-nitride test material. "A tiny bit of dopant has a huge effect on a material's properties, but we did not know why."
Audio Interview / Text: http://eetimes.com/article/showArticle.jhtml?articleId=19200024