
Synchrotron x-rays probed the memristor in a 100 nanometer region with concentrated oxygen vacancies (right, shown in blue) where the memristive switching occurs. Surrounding this region a newly developed structural phase (red) was also found to act like a thermometer revealing how hot the device becomes when read or written.
Using their favorite formulation—titanium oxide—HP used a synchrotron x-rays to correlate the device's electrical characteristics with its atomic structure, chemistry, and temperature in three dimensions. The until now unforeseen conclusion was that a hot spot near the bottom electrode heats enough during switching to induce a crystallization of the oxide. After driving out vacancies (for a 1) or introducing them (for a 0) in one-to-two nanometers thick region, the film cools in an annealing-like like process which leaves the film in a fixed crystalline state that should remain that way indefinitely.
Further Reading: http://bit.ly/NextGenLog-lZsz