Using conventional materials-processing technology as a foundation, researchers at the University of California-Davis have developed nanotube-based thin films to build capacitors with a power density of 30 kilowatts per kilogram, a tenfold increase over previous devices. The "supercapacitors," with a scan rate of 1,000 millivolts/second, "can be manufactured very efficiently," according to their inventor, professor Ning Pan. Pan hopes to fabricate supercapacitors that can replace conventional batteries in handheld electronic devices. Two capacitor manufacturers are said to be competing to license the technology from UC Davis' Technology Transfer Center. "Supercapacitors built using electrodes made from our nanotube thin films exhibit very high power density, very high scan rates and nearly ideal cyclic voltammograms," said Pan, a professor of biological and agricultural engineering. "Also, our nanotube-based electrode material is simple and fast to prepare, since no binder is required." Researchers at the university's Nanomaterials in the Environment, Agriculture and Technology center, and consultant Jeff Yeh of Mytitek Inc. (Davis, Calif.), aided in the project. The company co-sponsored the research with the U.S. Missile Defense Agency.
Text: http://www.eet.com/article/showArticle.jhtml?articleId=60404986