ENERGY | WIRELESS | NANOTECH | MEMS | OPTICS | QUANTUM | 3D | CHIPS | ALGORITHMS

Wednesday, September 09, 2009

"MATERIALS: Startup pioneers carbon-based FPGAs"

By 2015, carbon films will be ready to take over from copper the interconnection task, as well as the from silicon the semiconductor task and with proper coatings even the role of insulator. But today carbon films--called graphene--cannot be fabricated in sizes larger than one-inch without it deteriorating into its amorphous form, called graphite. Not willing to wait until 2015, a startup and Rice Univeristy are harnessing the easy-to-fab amorphous graphite to create configurable carbon memory elements today. Look for carbon-based field programmable gate arrays in two years. R.C.J.


Carbon-based memory architectures promise to revolutionize FPGA design, according to the founder of a chip startup. Startup NuPGA was founded by Zvi Or-Bach, a winner of the EE Times Innovator of the Year Award. He previously founded eASIC and Chip Express. Or-Bach has applied for a patent, along with Rice University, for its carbon-based memory process developed by professor James Tour. The approach uses graphite as the reprogrammable memory element inside vias on otherwise conventional FPGAs. Rice University researchers developed a bulk chemical process that converted nanotubes into nanoribbons, providing the raw material needed to perfect a technique based on using voltage pulses to make or break connections--essentially turning the carbon ribbons into reprogrammable switches. NuPGA plans to harness these reprogrammable switches in FPGAs by inserting graphite into vias between chip layers, allowing them to be reconfigured on-the-fly.
Text: http://www.eetimes.com/showArticle.jhtml?articleID=219700381