Robotic jellyfish aim to harness one of nature's simplest and most efficient mechanisms to create schools of autonomous vehicles to patrol our oceans. Virginia Tech's robotic jellyfish could be used to patrol for contamination as well as clean up oil spills and other environmental pollutants: R. Colin Johnson
Alex Villanueva and the experimental robotic jellyfish that one day could could patrol the seas for the military and for environmental safeguard.
Here is what Virginia Tech says about their robot jellyfish: Virginia Tech College of Engineering researchers are working on a multi-university, nationwide project for the U.S. Navy that one day will put life-like autonomous robot jellyfish in waters around the world.
The main focus of the program is to understand the fundamentals of propulsion mechanisms utilized by nature. Future uses of the robot jellyfish could include conducting military surveillance, cleaning oil spills, and monitoring the environment.
This isn’t science fiction. It’s happening now in a lab inside Virginia Tech’s Durham Hall, where a 600-gallon tank is regularly filled with water as small robotic jellyfish are tested for movement and energy self-creation and usage. A synthetic rubbery skin, squishy in one’s hand, mimics the sleek jellyfish skin and is placed over a bowl-shaped device covered in electronics. When moving, they look weirdly alive.
The idea for a robotic jellyfish did not originate at Virginia Tech, but rather the U.S. Naval Undersea Warfare Center and the Office of Naval Research. Virginia Tech, is teaming with four U.S. universities on the multi-year, $5 million project: University of Texas at Dallas is handling nanotechnology based actuators and sensors; Providence College in Rhode Island is handling biological studies, University of California, Los Angeles, is handling electrostatic and optical sensing/controls, and Stanford University is overseeing chemical and pressure sensing. Virginia Tech is building the jellyfish body models, integrating fluid mechanics and developing control systems. Several other major U.S. universities and industries also are on the project, as well as collaborators and advisory board members.
The project has been in the works for nearly four years now and has garnered much attention form media outlets from The Los Angeles Times to Popular Science to New Scientist and several marine-related trade publications. Several more years of work remain on the project before any models are released for military reconnaissance or object-tracking operations, be it with cameras, sensors, or other devices.
The smaller models are being developed to be powered by hydrogen, naturally abundant in water, which is a huge step in autonomous craft. The larger models may be operated by electric batteries built into the robotic creature. In both cases, the jellyfish must be able to operate on their own for months or longer at a time as engineers likely won’t be able to capture and repair the robots, or replace power sources.
Further Reading