Wednesday, May 30, 2012

#WIRELESS: "Graphene Tooth Tattoo Detects Bacteria"

Wireless 'tooth tattoos' may soon be used to detects harmful bacteria in the mouth. By combining a super sensitive grapheme sensing array with a small antenna, a handheld device can pick up signals from the tooth tattoo allowing maladies to be diagnosed with a remote reader: R. Colin Johnson

The sensor, shown here on a cow's tooth, detects bacteria in the body and passes a signal to a nearby receiver. (Photo by Michael McAlpine)

Here is what Princeton says about its tooth tattoo: Using silk strands pulled from cocoons and gold wires thinner than a spider's web, researchers at Princeton University have created a removable tattoo that adheres to dental enamel and could eventually monitor a patient's health with unprecedented sensitivity.

In a laboratory in Princeton's Engineering Quadrangle, a graduate student demonstrated the system's wireless capability, breathing across a sensor attached to a cow's tooth. Instantaneously, the sensor generated a response to the student's breath and transmitted a signal to a nearby monitor.

The researchers created the tattoo by bundling the silk and gold with graphene — an extremely thin sheet of carbon in which atoms are arranged in a honeycomb lattice. The material's unique properties allowed the researchers to construct a small, flexible device able to detect bacteria at a much higher sensitivity level than traditional methods. In tests, the researchers detected samples of bacteria that can cause surgical infections and others that can lead to stomach ulcers.

By combining the graphene array with a small antenna, the detection can be picked up by a remote reader device that is small enough to be held in a user's hand

The results were reported March 27 in the journal Nature Communications. In addition to professor Michael McAlpine, the paper's authors included graduate student Manu Mannoor, undergraduate Jefferson Clayton, Assistant Professor of Electrical Engineering Naveen Verma and associate research scholar Amartya Sengupta at Princeton; Hu Tao, David Kaplan and Fiorenzo Omenetto of Tufts University; and Rajesh Naik, of the Air Force Research Laboratory. Support for the research was provided by the American Asthma Foundation and the Air Force Office of Scientific Research.

To build the devices, McAlpine's team first imprinted tiny graphene sensors onto an extremely thin film of water-soluble silk. (The Tufts researchers pulled silk strands from cocoons, dissolved them in a solution and dried the mixture to create the silk base.)

Next, the researchers made an antenna by depositing a pattern of thin gold strands onto the silk film, and connected it to the graphene sensors. When completed, the device resembles a common removable tattoo. To attach the sensor, the researchers place it against a tooth, or a person's skin, and wash it with water. The silk base dissolves in the water, but the graphene sensor and the antenna remain securely fastened to the spot.

To allow the device to detect certain types of bacteria, the researchers attached peptides — fragments of proteins — to the graphene sensors. The peptides bind to bacterial cells and allow the researchers to detect a signal change from the graphene sensors.

McAlpine said one of the goals was to create a device that was small, flexible and passive, capable of providing detection from within the body or other remote location. So the researchers designed the device without a power supply. Instead, an external radio transmitter held nearby the device delivers a signal that causes the device to

Designing the antenna was one of the project's challenges. The gold coil needs to be big enough to transmit a readable signal, but small enough to fit within the sensor's compact footprint. The team was able to attach the current version of the system to a cow's tooth; reducing the size of the sensor in order to fit onto a human's tooth would require further work.

The current design allows for detection at a relatively short but practical distance, roughly a centimeter. Verma said if longer range was needed for other applications, modifications could be developed for the system.

The researchers said one of the key developments of the research was the use of graphene with a biocompatible base, in this case silk. Current biosensors tend to be relatively rigid and heavy, and they are often uncomfortable for patients. In large part, that is a result of sensors' base material, called a substrate.

In addition to its flexibility and biocompatibility, the solubility of silk meant that it could wash away with water or be dissolved by the body's enzymes.

The team plans to conduct further studies to better understand the adhesion between the tooth enamel and the graphene sensor with the goal of achieving a longer-lasting bond and enhancing the longevity of the system. One of the challenges for a dental system is protecting the sensor from inadvertent damage from things like brushing.
Further Reading