ENERGY | WIRELESS | NANOTECH | MEMS | OPTICS | QUANTUM | 3D | CHIPS | ALGORITHMS

Monday, April 16, 2012

#CHIPS: "Moores' Law Extended for Multi-Core Scaling"

Today, direct-write cache memories are the mainstay of microprocessors, since they lower memory latency in a manner transparent to application programs. However, designers of advanced processors have advocated a switch to software-managed scratchpads and message-passing techniques for next-generation multi-core processors, such as the Cell Broadband Engine Architecture developed by IBM, Toshiba and Sony, which is used for the PlayStation 3.


Unfortunately, software-managed scratchpads and message-passing techniques put an additional burden on application programmers and in that sense mark a step backwards in microprocessor evolution. Now Semiconductor Research Corp. (SRC) claims to have solved the scaling problem for next-generation processors with up to 512 cores, by using hierarchical hardware coherence that remains transparent to application programs as the natural evolution of today's multi-level caches.
Further Reading